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Effects of the torque model on the control of a VR spherical motor

Kok-Meng Leea,*, Raye A. Sossehb, Zhiyong Weia

aGeorgia Institute of Technology, The George W. Woodruff School of Mechanical Engineering, MARC474, Atlanta, GA 303320405, USA
bSeagate Technologies, Servo Engineering Technology, Oklahoma City, OK 73134, USA

Received 1 April 2003; accepted 17 July 2003

Abstract

This paper presents the effects of the torque model on the control of a variable reluctance spherical motor (VRSM) that offers

several attractive features by combining multi-DOF motions in a single joint. A general form of the torque model for a VRSM is

derived using the principle of energy conversion. The torque models for two specific design configurations developed at Georgia

Tech are compared. The first has been based on an existing design characterized by a torque model in quadratic form. For feedback

control of the spherical motor, the quadratic form of the torque model requires the use of nonlinear optimization schemes for

computing the stator coil current inputs. The second design incorporating high coercive permanent magnets has a linear torque–

current relationship and thus allows a closed form solution for both forward and inverse torque models. The effects of the torque

model on a PD-controlled VRSM prototype has been studied both numerically and experimentally. Experimental results agree well

with the computation derived analytically.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-degree-of-freedom (DOF) actuators are finding
increasing uses in a number of industries. The need for
such systems has motivated the development of un-
conventional actuators that have a potential to realize
multi-DOF motion in a single joint. One such actuator is
a ball-joint-like spherical motor motivated by the rapid
development of robotics in the 1980s.
In some applications such as high-speed plasma, laser

or water-jet cutting, and coordinate-measuring, the
demands on the workspace and wrist toque are low
but the end-effector must be oriented quickly, con-
tinuously, and isotropically in all directions. A ball-
joint-like motor characterized with no singularity in the
middle of the workspace presents a major performance
advantage in trajectory planning and control as
compared to a popular three-consecutive-rotational-
joint wrist. The ability of a spherical motor to provide
continuous controlled spin motion while allow for some

regulation in roll and yaw motions offers several
unique applications such as wheels for carving, steer-
able propeller, and rotating hands for live-object
handling. Other potential applications include actuation
for a three-DOF mechanical shoulder, an eyeball
camera, as well as a robotic wrist. With the shoulder
and the wrist joints driven by spherical motors and the
elbow by a single-axis motor, only three actuators are
needed for a total of seven DOFs. As compared to
conventional robotic actuation, which would require
14 actuators in a dual arm manipulator system, a
design using three-DOF actuators would significantly
improve the kinematics and dynamic characteristics,
and thus allow for more sophisticated intelligence to be
implemented.
The three dominant types of spherical motors

independently developed in the late 1980s are the
induction type (Davey, Vachtsevanos, & Powers, 1987;
Foggia, Oliver, & Chappuis, 1988), the variable
reluctance (VR) motor that includes the stepper (Lee,
Vachtsevanos, & Kwan, 1988), and the direct current
motor (Hollis, Salcudean, & Allan, 1991; Kaneko,
Yamada, & Itao, 1988). Lee and Pei (1991) investigated
the kinematic relationship among the poles of a VRSM.
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The dynamic model of a particular VRSM can be found
in (Lee, Roth, & Zhou, 1996), where the torque model is
a quadratic function of the current inputs to the stator
coils. More recently, Wang, Jewel, and Howe (1997)
developed a similar VR spherical motor with a very
simple magnetic rotor assembly and coil arrangement
capable of two and three DOF motions. Chirikjian and
Stein (1999) proposed a commutation algorithm for a
spherical stepper. Of particular interest is the develop-
ment of a VR spherical motor (VRSM), which possesses
several advantages including smooth motion and
compact in design. These, however, come with a number
of challenges. To address some of the challenges, we
offer the following:

1.1. A detailed analysis on the effects of the torque model

on the VRSM control system is presented

A general form of the torque model for a VRSM is
derived using the principle of energy conversion. The
torque models for two specific design configurations
(DC-I and DC-II) developed at Georgia Tech are
compared. The first (or DC-I) has been based on
an existing design (Lee et al., 1996) characterized
by a torque model in quadratic form. For feedback
control of the spherical motor, the quadratic form
of the torque model requires the use of nonlinear
optimization schemes for computing the stator coil
current inputs. A look-up table is often used in order to
reduce the computational load in real time. The desire
to develop a VRSM that has a linear torque model
has led to the development of DC-II incorporating high
coercive permanent magnets. As will be demonstrated,
since closed form solutions can be obtained from the
inverse torque model, the sample time of the control
system can be drastically reduced and kept as a
constant.

1.2. The torque model of a VRSM has been computed

using 3D finite element (FE) analysis

The motor designs to date have often been based on
arguments employing rather simple magnetic circuits.
Unlike prior studies where the torque models are often
formulated using a lump-parameter approach, we derive
the torque model from the magnetic field distributions
using finite-element (FE) method. The torque generated
by a VRSM depends on the magnetic field interaction
between the stator electromagnets and the rotor poles.
Using ANSYS, an off-the-shelf FE code, the torques
were numerically predicted for the two design config-
urations. We verify the FE computation using DC-I.
The 3D computation is then used to derive the torque
model for DC-II.

1.3. The validity of the torque model on the VRSM

control system has been tested both numerically and

experimentally

Along with the torque model, a complete dynamic
model that takes into account the effects of the
orientation measurement system has been derived to
serve as a design tool to simulate the dynamic
performance of a PD-controlled VRSM system. Experi-
ments conducted on a VRSM prototype shows that
experimental results agree well with the computation
derived analytically. The dynamic model that includes
both forward and inverse torque models provides a
useful platform for tuning of the controller gains of the
VRSM control system.

1.4. We analyze the effects of the linear torque model on

the control system performance of a VRSM through the

number of control inputs

One of the most attractive features of a linear torque
model is that a nonlinear input optimization is not
necessary since a closed-form optimal solution can be
derived. This unique feature offers a designer an
additional flexibility to distribute the stator coils during
the design stage. Unlike those with DC-I or DC-II
where a small number of coils are used, the DC-III has
24 stator coils and 8 rotor permanent magnet poles. This
stator–rotor layout is also characterized by having pairs
of poles orthogonal to each other. Through a design
simulation of a third design configuration (DC-III), we
show that a linear torque model (which eases the use of
large number of highly distributed inputs without the
penalty of computational burdens) could result in much
lower heat energy, which is dissipated during the transient.

2. Overview of the VRSM

The VRSM referred to in this paper has a similar
structure as ball-joint-like device in (Lee et al., 1996). As
shown in Fig. 1, the structure is made up of four basic
assemblies, a spherical rotor, a hollow spherical stator, a
bearing system, and an orientation measurement system.
The stator houses a number of electromagnets strategi-
cally distributed on the inside of its surface. Similarly,
the rotor consists of a number of poles made up of
ferromagnetic materials or permanent magnets. The
rotor poles radially meet at the center of the rotor, and
the stator cores are connected by the magnetic
conductor layer in the stator shell to form a magnetic
circuit with the air gaps.
Feedback control of the spherical motor requires an

orientation measurement system. When off-the-shelf
single-axis encoders are used, a typical orientation
measurement system requires a mechanism that consists
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of the two arc-shaped guides and a sliding block. The
two guides are mounted orthogonally on bearing pins
attached to the outside of the stator. As shown in Fig. 2,
the X and Y encoders measure the rotation of their
corresponding guides and the Z encoder measures the
spin of the rotor shaft about its axis. Detailed
derivations of the kinematics that relate the encoder
readings (yX ; yY ; yZ) to the rotor orientation or the ZYZ

Euler angles ðc; y;fÞ can be found in (Lee & Pei, 1991).
The forward kinematics is given below:

c ¼ atan 2ð�Sty
;Cty

Syy
Þ; ð1aÞ

y ¼ atan 2ðSyy
;Cyy

CcÞ; ð1bÞ

f ¼ atan 2ðSyy
Syzy

þ Cyz
Sty

Cyy
;Syy

Cyz
� Syz

Sty
Cyy

Þ; ð1cÞ

where Cð�Þ ¼ cos ð�Þ; Sð�Þ ¼ sin ð�Þ; and
ty ¼ atan 2ð�SyScCyy

;CyÞ: ð2Þ

The corresponding inverse kinematics is

yx ¼ atan 2ð�SySc;CyÞ; ð3aÞ

yy ¼ atan 2ðSyCc;CyÞ; ð3bÞ

yz ¼ atan 2ðCfCySc þ SfCc;�SfCySc þ CfCcÞ: ð3cÞ

The control of a VRSM consists of two steps as
shown in Fig. 3. First, a stabilizing torque is designed to
control the VRSM along a desired trajectory. Next,
since the motor has redundant inputs, the currents
required to generate the stabilizing torque designed in
the first step are determined by solving a constrained
optimization problem. As will be shown in the following
sections, the torque and dynamic models have signifi-
cant effects on the control of the VRSM.

3. Torque model

The spherical motor magnetic co-energy can be
expressed in the following quadratic form:

Wc ¼
1

2
IT½L�I; ð4Þ
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Fig. 1. Explored view of a VRSM CAD model.

Fig. 2. Orientation mechanism.
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Fig. 3. Structure of the VRSM controlled system.
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where

L½ � ¼
½Lss� ½Lsr�

½Lrs� ½Lrr�

" #
; I ¼

Is

Ir

" #
;

where Is and Ir are the stator and rotor current input
vectors, respectively; ½Lss� and ½Lrr� are the self-induc-
tance sub-matrices of the stator and rotor, respectively;
and ½Lsr� ¼ ½Lrs�T is the mutual inductance sub-matrix.
The matrix, ½L�ARðmþnÞ	ðmþnÞ; where m and n are the
number of electromagnets and rotor poles respectively,
is therefore symmetric. The torque can be derived by
differentiating the magnetic co-energy with respect to
the angular position variables Tl ¼ ðqW 0

m=qylÞ; where
l ¼ 1; 2 and 3 corresponding the axes x; y; and z;
respectively. Note that permanent magnets (PMs) can be
modeled as an equivalent magneto-motive force (mmf)
or Ampere-turns. In general, the VR spherical motor
torque has the following form:

Tl ¼
1

2
ITs

q½Lss�
qyl

Is þ
1

2
ITr

q½Lrs�
qyl

Is þ ITr
q½Lrr�
qyl

Ir: ð5Þ

3.1. Effects of pole design on motor torque

The specific form of the torque depends on the design
of the stator and rotor poles. Two specific design
configurations, both of which share similar mechanical
structure with a rotor diameter of 76.2mm, are
compared below.

3.1.1. Design configuration I (DC-I)

In this configuration, stator electromagnetic coils are
wound on ferromagnetic cores. Rotor poles are simple
iron cores with no excitation (or Ir ¼ 0). The spherical
motor torque has a strictly quadratic form (Lee et al.,
1996):

Tl ¼
qW 0

m

qyl

¼
1

2
ITs

q½Lss�
qyl

Is: ð6Þ

The specific prototype developed at Georgia Tech has
eleven electromagnets of 500 turns arranged following
the pattern of a regular icosahedron while the rotor
houses five iron poles located at the vertices of a regular
octahedron. The topmost stator and rotor poles are

eliminated to provide area for the shaft as shown in
Fig. 1.

3.1.2. Design configuration II (DC-II)

An alternative configuration is to replace the rotor
poles with permanent magnets. A particular design with
six cylindrical PMs is shown in Fig. 4(a), where the
magnetization axes of the PMs are arranged such that
adjacent PMs have opposite polarity. The PMs are then
molded as a part of a smooth spherical ball as shown in
Fig. 4(b). In addition, in order to have no generated
torque when there are no current excitations, the stator
coils of 1000-turns are wound on non-ferromagnetic
cores, the result of which is eliminating the third term in
Eq. (5). The removal of the ferromagnetic core reduces
the self-inductance ½Lss� of the electromagnetic coils and
hence the contribution to the first term of Eq. (5). When
the self-inductance term is small compared to the second
term due to mutual-inductance term, the torque can be
approximated by a linear combination of stator input
currents:

TlEITr
q½Lrs�
qyl

Is ¼ KðqÞ½ �Is; ð7Þ

where Ir is a vector characterizing the equivalent
currents of the given PMs; and q ¼ ½c; y;f�T is a vector
of ZYZ Euler angles describing the rotor orientation
w.r.t. the stator reference frame.

3.2. Finite-element modeling of motor torque

The torque model of a spherical motor is a function of
magnetic field distribution governed by Maxwell’s
equations:

r�B ¼ 0; ð8aÞ

r 	H ¼ J; ð8bÞ

where H is the magnetic field intensity; J is the current
density; and B ¼ mH is the magnetic flux density. Closed
form solutions to these equations are rather cumber-
some and are only available for a few devices with
relatively simple structures.
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Fig. 4. Rotor of DC-II. (a) Before molding. (b) After molding.
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3.2.1. Finite element formulation using scalar potential

Maxwell’s equations that govern the spherical motor
field distribution are formulated using scalar potential
functions and solved using FE methods. Using scalar
potential formulation, the magnetic field intensity is
separated into two parts, H ¼ Hs þHm; where Hs and
Hm are the field intensity due to the current source and
the magnetization of the material, respectively. Hs is
solved using the Biot-Savart law:

Hs ¼
1

4p

Z
V

J	 r

rj j3
dV ; ð9Þ

where r is the position vector from current source to a
node point, and V is the volume of the current source.
Hm is curl free and expressed in terms of a scalar
potential function F :

Hm ¼ �rF: ð10Þ

Using constitutive relationship and Eq. (10), Eq. (8a)
can be written as

r�ðmrFÞ ¼ 0 ð11Þ

which is commonly referred to as Laplace’s equation.
Once the magnetic field distribution is known, the
torque generated by the spherical motor can be
computed using Eq. (12):

T ¼ �
Z

V

a	 ðJ	 BÞ dV ; ð12Þ

where ðJ	 BÞ is the Lorentz force; a represents the
moment arm perpendicular to the axis of rotation and
directed to the point where the force is computed.
In formulating the magnetic field distribution of the

spherical motor, the space occupied by the motor is
divided into four regions as shown in Fig. 5 where A and
C are the typical flux surface and contour respectively.
ANSYS, an off-the-shelf FE analysis package, is used to
solve for the potential function. The SOLID96 element
(an eight-node brick element with six DOF) in ANSYS
is used to model the interior regions of the spherical
motor. The six DOF include displacement, electric

potential, magnetic scalar potential, and temperature.
The exteriors of the free space (air) regions are modeled
using INFIN47 elements. These four-node boundary
elements model the far field decay in the magnetic field.
The coil regions of the spherical motor are represented
by SOURCE36 elements. Since the ANSYS FE package
does not provide torque as an output, a macro was
written to compute the torque generated by summing
the cross products of the elemental force with its
centroid.

3.2.2. FE torque analysis and model

The FE analysis consists of two parts. The first part is
to verify the computation using published experimental
data performed on the DC-1. Next, the FE torque
model is derived for the DC-II (Sosseh, 2001).

3.2.2.1. Verification using DC-I. Some experimental
measurements were conducted with DC-I (Lee et al.,
1996) to model the permeance between an adjacent pair
of stator and rotor poles. In (Lee et al., 1996), DC-I was
assembled with two electromagnets spaced 180 degrees
apart such that the axes of the two stator poles align
with two of four cylindrical rotor poles. The torque
generated by the magnetic interaction was measured
using a six-DOF force/torque sensor. A series of torque
measurements was then taken with the rotor’s position
and the stator pole current inputs as independent
variables. An FE analysis of the above experiment is
performed for current inputs of 1 and 2A with
separation angles ranging from 0 to 90 in six-degree
increments. Due to the iron losses in the experiments, all
iron regions in the FE analysis are represented by the
BH curve in Fig. 6(a). Both Roth’s experiments and the
FE analysis show that the torque generated by DC-I has
the following form:

TðjÞ ¼ KðjÞi2; ð13Þ

where T is the resultant of the measured torque; j is the
separation angle between a pair of interacting poles; K is
an equivalent ‘‘torque constant’’ function of j; and
i is the current applied to the stator electromagnets.
Fig. 6(b) compares the FE computation of KðjÞ for
1 and 2A. As shown in Figs. 6(c) and (d), the FE results
agree with the data obtained experimentally.

3.2.2.2. Torque model of DC-II. The torque model for
DC-II has been derived using FE methods (see Fig. 7). If
superposition holds, the complete spherical motor
torque model can be derived from the one-pole pair
torque model. The principles of superposition should be
held if the first and third terms in the torque model given
by Eq. (5) are negligible. This results from removing the
iron core in the stator coils. By evaluating the torque
that results from the interaction of one stator pole pair
with two rotor pole-pairs, and comparing these results
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with the torque obtained by summing up results from
individual pole pair interactions, the principles of
superposition can be verified.
As suggested by the Lorentz force computed numeri-

cally, the torque generated by the interaction between
a pair of rotor–stator poles can be written in the

following form:

Tjk ¼ �f ðjjkÞ
sj 	 rk

sj 	 rk

�� �� ij ; ð14Þ

where f ðjjkÞ is a torque constant; sj is the location
vector of the stator coil; and rk is the magnetization axis
of the rotor pole.
Using a radial basis transfer function, the approx-

imate torque constant #fðjjkÞ derived from the FE
computed data shown in Fig. 7 has the following form:

#fðjjkÞ ¼
jjTjkjj

ij
¼

XNf

n¼1

an exp ð�lnj2jkÞ; ð15Þ

where the estimation coefficients an and ln are deter-
mined such that the norm squared of the estimation
error—jjf ðjjkÞ � #fðjjkÞjj

2 is minimized; and Nf is the
order of the estimation function. Fig. 7 shows the torque
constant from the ANSYS simulations against the
approximate torque constant. The coefficients for the
approximate function with Nf ¼ 4 are l1 ¼ 8:02; l2 ¼
7:85; l3 ¼ 38:90; l4 ¼ 176:61; a1 ¼ �35:62; a2 ¼ 35:89;
a3 ¼ 0:10; and a4 ¼ �0:28: In the approximate model,
the torque from the interaction of a pair of poles is set to
zero for separation angles larger than 40, since the
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Fig. 6. Verification of FE computation using DC-I. (a) BH curve of 1010 steel core, (b) FE computed data, (c) Comparison I=1A, (d) Comparison

I=2A.

Fig. 7. FE computed torque data.
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generated torque beyond this separation angle is smaller
than the error due to the mesh size.
Since the torque model developed so far is valid only

for the interaction of one pair of poles, an additional test
was performed to determine if the principles of super-
position hold. Fig. 8 shows simulation results for
verifying that superposition holds. The superposition
of the two individual cases came very close to the
case with the combined rotor poles. This implies that
the torque generated by the interaction of one stator
pole pair with N rotor pole pairs is similar to summing
up the interaction of N one-pole pair interactions.
Therefore the torque generated by the interaction of one
stator pole pair and N rotor pole pairs can be evaluated
as follows:

KTjN ¼
XN

k¼1

#fðjjkÞ
sj 	 rk

jjsj 	 rk jj
ij : ð16Þ

4. Dynamic model of the motor/sensor system

The orientation measuring system contributes two-
thirds of the total system inertia and cannot be
neglected. The effects of the X - and Y -guides on the

rotor dynamics can be described by the constraint
equations in the following form:

f1ðqT ; yX ; yY Þ ¼ 0; ð17aÞ

f2ðqT ; yX ; yY Þ ¼ 0; ð17bÞ

where qT ¼ ½c; y;f�: To include the constraints imposed
by the X - and Y -guides, we use a Lagrange formulation
to derive the dynamic model for the combined rotor and
encoder mechanism:

d

dt

qL
q ’qj

� �
�

qL
qq

¼ Qj þ
X2
i¼1

aijli; ð18Þ

where J ¼ 1;y; 5; L is Lagrangian; Qj represents the
applied torque; l1 and l2 are constrained Lagrange
multipliers; and the term

P2
i¼1 aijlj represents the

contribution of the reaction forces (from the measure-
ment guides) to the generalized moments. In Eq. (18), aij

are the elements of the Jacobian matrix ½a� ¼ ½ar� ½I �
	 


of the angular velocity constraints, which can be derived
by differentiating Eqs. (17a) and (17b), in the following
form:

ar½ � I½ �½ �

q

yX

yY

2
64

3
75 ¼

0

0

" #
; ð19Þ
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Fig. 8. Superposition of motor torques.
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where ½ar� is a 3	 2 matrix, the elements of which are
functions of the ZYZ Euler angles; and ½I � is a 2	 2
identity matrix. It can be shown that the dynamic model
of the combined rotor/sensor mechanism can be written
in the following compact form:

’x1 ¼ x2; ð20Þ

½Hðx1Þ� ’x2 ¼ Tðx1; uÞ � Cðx1;x2Þ; ð21Þ

where x1 ¼ q and x2 ¼ ’q are 3	 1 vectors of the ZYZ

Euler angles ðc; y;fÞ and their velocities respectively;
½Hðx1Þ� is a symmetric, positive-definite inertia matrix
given by

½Hðx1Þ� ¼ ½Bðx1Þ��1½½Jr� þ ½aTr �½Jg�½ar�� ð22Þ

and Cðx1;x2Þ represents the vector of Coriolis terms
given by

½Cðx1;x2Þ� ¼ ½Bðx1Þ��1½tþ ½aTr �½Jg�½ar��

and where

½Bðx1Þ� ¼

�SyCy SySf Cy

Sf Cf 0

0 0 1

2
64

3
75; ð24Þ

½Jr� ¼

ðI2 � I1Þcos2 yþ I1 0 I2 cos y

0 I1 0

I2cos y 0 I2

2
64

3
75; ð25Þ

½Jg� ¼
IXg 0

0 IYg

" #
; ð26Þ

½ar� ¼

�SyCyCc

S2yS2c þ C2
y

�Sc

S2yS2c þ C2
y

0

SyCyCc

S2yC2
c þ C2

y

�Cc

S2yC2
c þ C2

y

0

2
6664

3
7775; ð27Þ

s ¼

2ðI2 � I1ÞSyCy ’c’yþ I2Sy ’y ’f

ðI1 � I2ÞSyCy ’c2 � I2Sy ’c ’f

I2Sy ’c’y

2
664

3
775: ð28Þ

5. Control system experiments

The VRSM prototype DC-II developed at Georgia
Tech has been used to test the effects of the torque
model of the VRSM controlled system. The test bed is
shown in Fig. 9.

5.1. Control algorithms

As shown in Fig. 3, the control algorithm is designed
in two stages. In the first stage, the desired stabilizing
torque Td is first determined as the fictitious control
input. In the second stage, the optimal control input
vector u is determined. The problem of finding the
actual control input vector u from the fictitious control
input vector Td is set up as a static constraint
optimization problem. The actual current input vector
is found by minimizing the control input energy
consumption:

J ¼ 1
2
uT½W �u ð29Þ

subject to the desired torque constraint

Td ðx1Þ ¼ ½Ktðx1Þ�u; ð30Þ

where uAR10 is the control vector of stator coil currents;
and ½W �AR10x10 is a positive definite weighting matrix.
Provided that the control currents are kept within limits,
the optimal solution to this problem can be solved using
Lagrange multipliers. The optimal solution can be
written in closed form:

u ¼ ½W ��1½KT
t �½½Kt�½W ��1½KT

t ��
�1Td : ð31Þ
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In implementation, saturation limits are imposed on
the controller to ensure the current inputs are within the
amplifier limitations. The eventual stability of the
system depends on whether the spherical motor can
generate the desired torque.
Two different formulations of stabilizing torques are

considered for the first stage of the controller; namely, a
PD controller and a back-stepping controller.

5.1.1. PD controller

Using Lyapunov stability analysis, it can be readily
shown that the desired torque for a PD controller,

Td ¼ ½Kp� *x1ðtÞ þ ½Kd � *x2ðtÞ; ð32Þ

where *x1ðtÞ ¼ qd � qðtÞ and *x2ðtÞ ¼ ’qd � ’qðtÞ define the
orientation tracking error and its derivative, respec-
tively, can drive the VRSM from its initial state to a
specified final state.

5.1.2. Back-stepping controller

The cascaded spherical motor dynamics in Eqs. (20)
and (21) have the appropriate structure for the back-
stepping controller design method. The desired torque
for a back-stepping controller has the following
form:

Td ¼ ½Hðx1Þ�yþ Cðx1;x2Þ: ð33Þ

Eq. (33) is a nonlinear compensator since it depends on
the dynamics of the spherical motor, where y is derived
such that the rotor will track the desired specified state
x1d if the position error dynamics are given as follows:

’*x1 þ ½Kp� *x1 ¼ 0; ð34Þ

where *x1 ¼ x1d � x1 and ½Kp� is a positive-definite gain
matrix. Eq. (34) can be rewritten as

x2 ¼ ’x1d þ ½Kp� *x1: ð34aÞ

Substituting the fictitious control input x2d for x2 in
Eq. (34a) yields

x2d ¼ ’x1d þ ½Kp�ðx1d � x1Þ: ð35Þ

The fictitious control input x2d is selected as the
specified velocity trajectory leading to the velocity error
*x2 ¼ x2d � x2: The error dynamics in Eq. (36) ensures
the velocity error approaches zero asymptotically, which
will eventually lead to the asymptotic convergence of the
rotor position error.

’*x2 þ ½Kd � *x2 ¼ 0; ð36Þ

where ½Kd � is a positive-definite gain matrix. Eq. (36) can
be rewritten as

’x2 ¼ ’x2d þ ½Kd � *x2: ð36aÞ

Substituting Eq. (36a) into Eq. (21) leads to the
stabilizing torque:

Td ¼ ½H�ð ’x2d þ ½Kd � *x2Þ þ Cðx1;x2Þ: ð37Þ

Comparing Eqs. (37) and (33) leads to

y ¼ ’x1d þ ½Kp�ð ’x1d � ’x1Þ þ ½Kd �

	 f½x1d þ ½Kp�ðx1d � x1Þ� � ’x1g

or y ¼ .x1d þ ð½Kp� þ ½Kd �Þð ’x1d � ’x1Þ

þ ½Kp�½Kd �ðx1d � x1Þ: ð38Þ

5.2. Simulation and experimental results

The PD gains of the VRSM were tuned via numerical
simulation and examined experimentally. Fig. 10 shows
the simulation results comparing three different gains,
where the VRSM is commanded to move from ðyX ¼
yY ¼ yZ ¼ 00Þi to ðyX ¼ 00; yY ¼ 100; yZ ¼ 600Þd : The
simulations correspond to a proportional controller gain
of ½Kp� ¼ diagð500; 200; 500Þ and a derivative gain of
½Kd � ¼ diagð50; a; 12:5Þ; with a=15, 25, and 50. With
½Kp� ¼ 500½I � and ½Kd � ¼ 15½I �; a significant steady state
error results in yY :
Experimental results are given in Fig. 11, which were

obtained with the controller gains, ½Kp� ¼
diagð500; 200; 500Þ and ½Kd � ¼ diagð50; 50; 12:5Þ: Fig. 11
shows the input currents and the corresponding torque
components for a ¼ 50: In Fig. 11(b), the applied
currents result from the application of a current
amplitude saturation limit of 3.25A on the desired
currents to match the current limit imposed by the
amplifiers. Figs. 11(a) and (b) show that the desired
currents for the PD controller are much lower than the
saturation limit at almost all times; the desired and
applied currents are equivalent. These simulation results
show that the spherical motor can successfully reach the
specified point from its initial upright position.
It is worth noting that due to the symmetric

arrangement of the spherical motor coils, the currents
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Fig. 10. Simulation results (a ¼ 15; 25 and 50).
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in stator coils #6 through #10 are equal but opposite in
direction to the currents in coils #1 through #5. In
addition, since the applied current and desired current
are identical, the applied torque T computed (using
the optimized current) agrees very well with the
desired torque Td (fictitious control input) as shown
in Fig. 11(c). The experimental results are compared
against the simulation in Fig. 11(d), which shows good
agreement. These results validate both the torque model
and the VRSM dynamics presented in Sections 3 and 4,
respectively. The simulation algorithm developed here
can therefore be used as an effective design tool for
proper selection of the feedback controller gains.

6. Design simulation

The torque model of DC-II is a linear function of
stator coil currents; a nonlinear input optimization is

not necessary since Eq. (31) offers a closed form
solution. This unique feature allows the use of a
large number of stator coils with no added complexity
in computing an optimal set of input currents. It is
thus of interest to explore how the linearity of the
torque model could influence the control system
performance of a VRSM through the number of
control inputs. The transient response of the motor
can be further improved by using non-contact optical
measuring sensor instead of the current encoder
guides and reducing the rotor inertia. This kind of
3D measuring system is now under development in
Georgia Tech. For this reason, we simulate the motion
of an alternative design configuration DC-III (which
has 24 stator coils and 8 rotor PM poles) with and
without encoder guide mechanism against that of the
DC-II using a back-stepping controller given by
Eqs. (33) and (38).
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Fig. 11. Experimental results (a ¼ 50). (a) Desired currents. (b) Applied currents. (c) Desired and applied torque. (d) Comparison of results
(simulation vs. experimental).
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Unlike those with DC-I or DC-II where only two coils
are diametrically placed on each of five evenly spaced
great circles, the coils in DC-III are radially located
symmetrically above and below the XY plane and
evenly distributed circumferentially such that there
are four stator coils in each of the 6 evenly distributed
great circles. With this arrangement, the two pairs of
diametrically placed stator coils of the DC-III can
generate both positive and negative torques in a plane.
The 24-8 stator–rotor layout is also characterized by
having pairs of poles orthogonal to each other. While
lower currents can be used with a larger number of coils
and a more distributed nature of the pole arrangement
for a specified torque, the trade-off is that the motion
range is limited for the same rotor size of 76.2mm
diameter. In addition, a smaller diameter of coil wire
is used in order to maintain the same number of turns
of 1000.
The step responses of the two designs were simulated

for the command to move the rotor from ðyX ¼ yY ¼
yZ ¼ 0Þi to ðyX ¼ 15; yY ¼ 0; yZ ¼ 60Þd with a
back-stepping controller for the following cases:

Case 1: DC-II with controller gains of [Kp]=diag(10,
30, 40) and [Kd]=diag(25, 25, 12.5).

Case 2: DC-III with the same controller gains as
Case 1.

Case 3: DC-III with no encoder guide mechanism
and controller gains of [Kp]=diag(20, 120,
80) and [Kd]=diag(37.5, 25, 18.5).

Table 1 summarizes and compares the values of the
design parameters used in the simulation. The geome-
trical similarity of the stator coils and the rotor PM
poles between the two designs is maintained so that the
FE torque data curve in Fig. 7 obtained for the DC-II
can be scaled for the DC-III.
Fig. 12 compares the step responses for the three

cases, where the corresponding torque is given in
Fig. 13. Fig. 14 compares the total heat power generated
by the currents flowing through all the coils during the
transient. As compared in Fig. 12, the performance
of DC-III is superior to that of DC-II in terms of
overshoot and response time, particularly the case with
no encoder guide mechanism. The results can be best
explained using Fig. 13. Fig. 13(a) shows that there are

discrepancies between the applied torque and the desired
torque for DC-II; indicating that the desired current
inputs (calculated from the desired torque) significantly
exceed the current limit of 3.75A during the transient.
As shown in Figs. 13(b) and (c), the DC-III was able
to deliver the torque as required due to a larger number
of coils and a better arrangement of the coils and PM
poles.
As seen in Fig. 14, the persistent demand of a

saturated torque for the DC-II could result in over-
heating the motor. Thanks to the linearity of the torque
model, which would allow for a large number of highly
distributed inputs to be used without the penalty of
computational burdens. The result is that much lower
heat energy is dissipated during the transient provided
that the final position can be maintained mechanically, a
research topic being studied.
The heat generated by the copper wire on the

stator coils should be effectively dissipated. An effective
way is to construct the stator shell and the cores
of stator coils out of aluminum so that the heat
from the copper wire can be conducted through the

ARTICLE IN PRESS

Table 1

Values used in design simulation

Dc-II Dc-III

Stator coils 10, ID=9.53mm, OD=25.4mm 24, ID=5.72mm, OD=15.24mm

Coil wire diameter 0.406mm 0.3175mm

Coil resistance 6.8O 6.46O
Magnetization axes 726 715

Rotor PM poles 6, diameter=19.1mm 8, diameter=11.4mm

Fig. 12. Comparison of the step responses.
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aluminum core to the aluminum shell that acts as a large
heat sink, where the surface is cooled by means of
natural convection. Fig. 15 shows the ANSYS simulated
temperature distribution of DC-III using the time
average power input in Case 3. As shown in the
sectional view (Fig. 15) that cut through a pair of stator
coils, the heat is effectively dissipated via conduction as
shown in the figure.

7. Conclusions

A general form of the torque model for a VRSM
has been derived from the principle of energy conver-
sion. The torque models for two specific design
configurations developed at Georgia Tech have been
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Fig. 13. Desired and applied torque. (a) Case 1 (b) Case 2 (c) Case 3.

Fig. 14. Total power of heat dissipation during the transient.

Fig. 15. Temperature distribution of DC-III (simulation using time average power input).

K.-M. Lee et al. / Control Engineering Practice 12 (2004) 1437–14491448



compared — one with a quadratic model and the other
with a linear torque model. Using ANSYS, an off-the-
shelf FE code, we verified the numerically computed
torque using DC-I. The torque model for DC-II has
been derived using the 3D FE computation for the
second design.
Along with the torque model, a complete dynamic

model that takes into account the effects of the
orientation measurement system has been employed to
serve as a design tool to simulate the dynamic
performance of a PD-controlled VRSM system. Experi-
ments conducted on a VRSM prototype shows that
experimental results agree well with the computation
derived analytically. We expect that the dynamic model
that includes both forward and inverse torque models
will provide a useful platform for tuning of the
controller gains of the VRSM control system.
Through a design simulation of a third design

configuration (DC-III), we show that a linear torque
model (which ease the large number of highly distrib-
uted inputs to be used without the penalty of computa-
tional burdens) could result in much lower heat energy
dissipated during the transient.
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